On Gilbert-Varshamov type bounds for Z2k linear codes

نویسندگان

  • Bo Hove
  • Christian Thommesen
چکیده

In this paper we derive a Gilbert-Varshamov type bound for linear codes over Galois rings GR(pl; j): However, this bound does not guarantee existence of better linear codes over GR(pl; j) than the usual Gilbert-Varshamov bound for linear codes over the residue class field GR(pj): Next we derive a Gilbert-Varshamov type bound for Z4 linear codes which guarantees the existence of Z4 linear codes reaching the usual Gilbert-Varshamov bound for binary codes. Finally we derive a Gilbert-Varshamov type bound for Z2k linear codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gilbert-Varshamov type bounds for linear codes over finite chain rings

We obtain finite and asymptotic Gilbert-Varshamov type bounds for linear codes over finite chain rings with various weights.

متن کامل

Constructions and bounds on linear error-block codes

We obtain new bounds on the parameters and we give new constructions of linear error-block codes. We obtain a Gilbert–Varshamov type construction. Using our bounds and constructions we obtain some infinite families of optimal linear error-block codes over F2. We also study the asymptotic of linear error-block codes. We define the real valued function αq,m,a(δ), which is an analog of the importa...

متن کامل

Strengthening the Gilbert–Varshamov bound

The paper discusses some ways to strengthen (nonasymptotically) the Gilbert–Varshamov bound for linear codes. The unifying idea is to study a certain graph constructed on vectors of low weight in the cosets of the code, which we call the Varshamov graph. Various simple estimates of the number of its connected components account for better lower bounds on the minimum distance of codes, some of t...

متن کامل

Source and channel rate allocation for channel codes satisfying the Gilbert-Varshamov or Tsfasman-Vladut-Zink bounds

We derive bounds for optimal rate allocation between source and channel coding for linear channel codes that meet the Gilbert-Varshamov or Tsfasman-Vlădut-Zink bounds. Formulas giving the high resolution vector quantizer distortion of these systems are also derived. In addition, we give bounds on how far below channel capacity the transmission rate should be for a given delay constraint. The bo...

متن کامل

Two Gilbert-Varshamov Type Existential Bounds for Asymmetric Quantum Error-Correcting Codes

In this note we report two versions of Gilbert-Varshamov type existential bounds for asymmetric quantum error-correcting codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007